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LETTER TO THE EDITOR 

SO(2, lkinvariant systems and the Berry phase 

Jose M Cervero and Juan D Lejarreta 
Departamento de Fisica Teorica, Facultad de Ciencias, Universidad de Salamanca, 37008 
Salamanca, Spain 

Received 26 April 1989 

Abstract. The general quadratic time-dependent quantum Hamiltonian is analysed using 
a time-dependent realisation of its SO(2,l)  invariance Lie algebra. Several interesting 
features of this procedure are pointed out. As an example, we easily calculate dynamical 
and geometrical (Berry) phases using only an algebraic procedure. An incorrect result 
previously published by another author is also pointed out. 

We present in this letter an exact calculation of dynamical and geometrical phases [ 11 
of a general quadratic time-dependent quantum Hamiltonian. Here, exact calculation 
means that we do not confine ourselves to the adiabatic case and we calculate the 
geometrical phase for arbitrary changes in time. Indeed, when restricting the expression 
to the adiabatic limit we shall recover Berry’s result. This general example can be 
added to those presented by Berry and Hannay [2] in their general discussion of 
non-adiabatic angles. Of course, our result proves once again that the sum of the 
dynamical and geometrical contributions to the total phase is preserved when a quantum 
system undergoes a change in parameter space along a closed path in time. We should 
also point out that there exists a relationship between our group-theoretical based 
calculations and the squeezed-state formalism as we shall discuss in a forthcoming 
report [3]. 

Let us start with the most general quadratic Hamiltonian written in canonical form: 

where the p are real functions of time and for t = t o :  P l ( t o )  = &(to)  = 1 and P2( to )  = 0. 
Consider the usual creation and annihilation operators: 

a = ( 2 m ~ ~ ~ ) - ’ ~ ~ [ m w ~ x + i p ~  (20) 

a+ = ( 2 m ~ ~ h ) - ” ~ [ m w ~ x - i p ] .  (26) 
In terms of these operators we can write (1) as: 

= hwo(fo(t)Ko+f(t)K+ +f*( t ) K - )  
and the K-operators are given by: 

KO = t( a +a  + 4) 
K +  = $a+a+  
K -  = taa. 

(3) 
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They close the SO(2, 1) Lie algebra: 

[KO, K * ] = * K +  

[ K + ,  K - ]  = -2Ko. 

Now we look for a set of time-dependent creation and annihilation operators. The 
obvious link with the SO(2, 1 )  coherent-state representation of such a set of operators 
will be discussed elsewhere [3]. For our present purposes it is enough to know that 

a(  t )  = p(  r )a + v( t ) u +  

a+( t )  = v*( t ) a  + p*(  t )a+  

( 6 0 )  

( 6 b )  

and, indeed, IpI2 - I v12 = 1 in order to keep the usual canonical commutation relation 
unchanged: [ u ( t ) ,  a + ( t ) ] = l .  Also p ( r o ) = l ;  v ( to )=O.  

A S O ( 2 , l )  representation similar to (4a)-(4c) can be constructed with the new 
time-dependent operators ( 6 a )  and (66) as 

M o ( t )  = t ( a + ( t ) a ( t ) + t )  

M + ( t )  =$a+(  t )a+(  t )  

M - ( t )  = t a ( t ) u ( t )  

which indeed fulfil the S O ( 2 , l )  Lie algebra ( 5 a )  and (56). The Heisenberg invariance 
condition 9(0 )  = 0, where 

is now imposed on MO( t )  (notice that MO( to) = K O  = (2hw0)- 'H(  t o ) ) .  Using the Lewis- 
Riesenfeld theorem [4] one can show that the eigenvalues of MO( t )  are time indepen- 
dent. Applying (8) to MO( t )  and after some tedious calculations, we obtain the general 
form of p ( t )  and v ( t ) :  

where 

The auxiliary function U ( t )  is a solution of the differential equation 

where 

which is, of course, the classical frequency of the classical equations of motion. 
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Now we re-express H( t )  in terms of the time-dependent operator basis MO( t )  and 
M,( t ) .  We can do that by using (41, (6), (9) and M,( 1 )  = MI( t )  i iM2( 1 ) .  We finally 
obtain: 

ff(0 = 2h(6o(t)Mo(t) + 81(r)M,(t)+ 6 , ( t ) M 2 ( t ) )  (12) 

where 

It is also trivial to show the following SO(2, 1) relationship between the frequencies 
defined in (13a)-(13c): 

9 2  - 8; - 6 2  2 - - w;(plp3-p:) (14) 

which is the geometrical measure of the hyperbolic SO(2, 1)-parameter manifold. In 
order to see the beautiful relationship with the angles, let us calculate in a different 
framework the following dynamical and geometrical quantities: 

1 
h Rd = -- (n, t ( H ( t ) ( n ,  t )  

0, = i( n, tld/dtln, t )  

(15a) 

(15b) 

where In, t )  is a time-dependent eigenstate of MO( t )  with time-independent eigenvalue 
$(n +;>. Thus, we easily find: 

Rd = - 6,( t ) ( n + t )  
R, = 6,( t ) ( n  +$). 

Several consequences can be drawn from these results. 
( i )  The SO(2,l)  formalism allows us to write the Hamiltonian in the time-dependent 

representation as a linear combination of M operators whose coefficients are the 
relevant frequencies which give rise to the dynamical and geometrical phases upon 
integration over time. These frequencies are exact and no adiabatic hypothesis has 
been made. 

(ii) It is easy to show that 0 ,+R,  = -(n + $ ) / m u 2  (the Lewis frequency). This sum 
is preserved as an invariant of the physical system as has been demonstrated in [2]. 

(iii) Although the general Hamiltonian (1) can be transformed at the classical level 
into a simple time-dependent frequency harmonic oscillator through a canonical 
transformation, the quantum theory is more subtle. In particular, due to the time 
dependence of the theory, there is no trivial way to relate the states in both representa- 
tions. Therefore, one cannot assign physical properties of one system to the other 
without performing the explicit calculations. In a recent paper, Morales [SI claims to 
give the exact correct expression for the Berry phase using only the assumption of 
canonically related physical systems and fails to give the correct result due to the 
above-mentioned reasons. This result is in fact given by our expressions (136), (156) 
and (166). 
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The method used in this letter can be applied to other physical systems exhibiting 
SO(2,l)  invariance, such as the conformal oscillator. These and other features related 
to coherence will be discussed in a forthcoming paper. 

One of us (JMC) would like to thank the warm hospitality extended to him at the 
Physics Department of the University of Bristol where this paper was initiated. He is 
also indebted to M Berry and J Hannay for several enlightening conversations. 
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